89 research outputs found

    A Strategy For Identifying Putative Causes Of Gene Expression Variation In Human Cancer

    Get PDF
    There is often a need to predict the impact of alterations in one variable on another variable. This is especially the case in cancer research, where much effort has been made to carry out large-scale gene expression screening by microarray techniques. However, the causes of this variability from one cancer to another and from one gene to another often remain unknown. In this study we present a systematic procedure for finding genes whose expression is altered by an intrinsic or extrinsic explanatory phenomenon. The procedure has three stages: preprocessing, data integration and statistical analysis. We tested and verified the utility of this approach in a study, where expression and copy number of 13,824 genes were determined in 14 breast cancer samples. The expression of 270 genes could be explained by the variability of gene copy number. These genes may represent an important set of primary, genetically "damaged" genes that drive cancer progression

    Topoisomerase II alpha gene copy loss has adverse prognostic significance in ERBB2-amplified breast cancer: a retrospective study of paraffin-embedded tumor specimens and medical charts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amplification of the <it>ERBB2 </it>(<it>Her-2/neu</it>) oncogene, which occurs in approximately 25% of breast carcinomas, is a known negative prognostic factor. Available data indicate that a variable number of nearby genes on chromosome 17q may be co-amplified or deleted, forming a continuous amplicon of variable size. In approximately 25% of these patients, the amplicon extends to the gene for <it>topoisomerase II alpha </it>(<it>TOP2A</it>), a target for anthracyclines. We sought to understand the significance of these associated genomic changes for breast cancer prognosis and predicting response to therapy.</p> <p>Methods and patients</p> <p>Archival tissue samples from 63 breast cancer patients with <it>ERBB2 </it>amplification, stages 0–IV, were previously analyzed with FISH probes for genes located near <it>ERBB2</it>. In the present study, the clinical outcome data were determined for all patients presenting at stages I–III for whom adequate clinical follow up was available.</p> <p>Results</p> <p>Four amplicon patterns (Classes) were identified. These were significantly associated with the clinical outcome, specifically, recurrence of breast cancer. The Amplicon class IV with deleted <it>TOP2A </it>had 67% (6/9) cases with recurrence, whereas the other three classes combined had only 12% (3/25) cases (p-value = 0.004) at the time of last follow-up. <it>TOP2A </it>deletion was also significantly associated with time to recurrence (p-value = 0.0002). After adjusting for age in Cox regression analysis, the association between <it>TOP2A </it>deletion and time to recurrence remains strongly significant (p-value = 0.002) whereas the association with survival is marginally significant (p-value = 0.06).</p> <p>Conclusion</p> <p><it>TOP2A </it>deletion is associated with poor prognosis in <it>ERBB2</it>-amplified breast carcinomas. Clarification of the mechanism of this association will require additional study.</p

    17β-Hydroxysteroid dehydrogenases involved in local oestrogen synthesis have prognostic significance in breast cancer

    Get PDF
    The 17β-hydroxysteroid dehydrogenase (17HSD) enzymes are involved in the local regulation of sex steroids. The 17HSD type 1 enzyme catalyses the interconversion of the weak oestrone (E1) to the more potent oestradiol (E2), whereas 17HSD type 2 catalyses the oxidation of E2 to E1. The aim of this study was to correlate the expression of these enzymes in the tumour with the recurrence-free survival of tamoxifen-treated breast cancer patients. We used real-time reverse transcriptase PCR to investigate the mRNA expression of 17HSD types 1 and 2 in tumour samples from 230 postmenopausal patients. For the patients with oestrogen receptor (ER)-positive breast cancer, we found a statistically significant positive correlation between recurrence-free survival and expression of 17HSD type 2 (P=0.026). We examined the ratio of 17HSD types 2 and 1, and ER-positive patients with low ratios showed a significantly higher rate of recurrence than those with higher ratios (P=0.0047). ER positive patients with high expression levels of 17HSD type 1 had a significantly higher risk for late relapse (P=0.0051). The expression of 17HSD types 1 and 2 in breast cancer differs from the expression of these enzymes in normal mammary gland, and this study indicates that the expression has prognostic significance in breast cancer

    Reconstructing cancer genomes from paired-end sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data.</p> <p>Results</p> <p>By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i) a partition of the reference genome into intervals; (ii) adjacencies between these intervals in the cancer genome; (iii) an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO), to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B) cycles.</p> <p>Conclusions</p> <p>We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is available at <url>http://compbio.cs.brown.edu/software/</url>.</p

    Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways

    Get PDF
    INTRODUCTION: Cardiac dysfunction is among the serious side effects of therapy with recombinant humanized anti-erbB2 monoclonal antibody. The antibody blocks ErbB-2, a receptor tyrosine kinase and co-receptor for other members of the ErbB and epidermal growth factor families, which is over-expressed on the surface of many malignant cells. ErbB-2 and its ligands neuregulin and ErbB-3/ErbB-4 are involved in survival and growth of cardiomyocytes in both postnatal and adult hearts, and therefore the drug may interrupt the correct functioning of the ErbB-2 pathway. METHODS: The effect of the rat-anti-erbB2 monoclonal antibody B-10 was studied in spontaneously beating primary myocyte cultures from rat neonatal hearts. Gene expression was determined by RT-PCR (reverse transcription polymerase chain reaction) and by rat stress-specific microarray analysis, protein levels by Western blot, cell contractility by video motion analysis, calcium transients by the FURA fluorescent method, and apoptosis using the TUNEL (terminal uridine nick-end labelling) assay. RESULTS: B-10 treatment induces significant changes in expression of 24 out of 207 stress genes analyzed using the microarray technique. Protein levels of ErbB-2, ErbB-3, ErbB-4 and neuregulin decreased after 1 day. However, both transcription and protein levels of ErbB-4 and gp130 increased several fold. Calreticulin and calsequestrin were overexpressed after three days, inducing a decrease in calcium transients, thereby influencing cell contractility. Apoptosis was induced in 20% cells after 24 hours. CONCLUSION: Blocking ErbB-2 in cultured rat cardiomyocytes leads to changes that may influence the cell cycle and affects genes involved in heart functions. B-10 inhibits pro-survival pathways and reduces cellular contractility. Thus, it is conceivable that this process may impair the stress response of the heart

    Amplification of HER2 is a marker for global genomic instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer.</p> <p>Methods</p> <p>HER2 status was determined using the PathVysion<sup>® </sup>assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39) or HER2 negative (n = 142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status.</p> <p>Results</p> <p>The frequency of AI was significantly higher (<it>P </it>< 0.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (<it>P </it>< 0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21.</p> <p>Conclusion</p> <p>The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and better treatment options to be developed.</p

    Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells

    Get PDF
    Grb7 has potential importance in the progression of cancer. We have previously identified a novel peptide that binds to the SH2 domain of Grb7 and inhibits its association with several different receptor tyrosine kinases. We have synthesised the Grb7 peptide, G7-18NATE, with two different cell penetrating peptides, Penetratin and Tat. In this study, we have shown that both Penetratin- and Tat-conjugated G7-18NATE peptides are able to inhibit the proliferation of SK-BR-3, ZR-75-30, MDA-MB-361 and MDA-MB-231 breast cancer cells. There was no significant effects on breast cancer MCF-7cells, non-malignant MCF 10A or 3T3 cells. In addition, there was no significant inhibition of proliferation by Penetratin or Tat alone or by their conjugates with arbitrary peptide sequence in any of the cell lines tested. We determined the EC50 of G7-18NATE-P peptide for SK-BR-3 cell proliferation to be 7.663 × 10−6 M. Co-treatment of G7-18NATE-P peptide plus Doxorubicin in SK-BR-3 breast cancer cells resulted in an additional inhibition of proliferation, resulting in 56 and 84% decreases in the Doxorubicin EC50 value in the presence of 5 × 10−6 and 1.0 × 10−5 M G7-18NATE-P peptide, respectively. Importantly, the co-treatment with Doxorubicin and the delivery peptide did not change the Doxorubicin EC50. Since Grb7 associates with ErbB2, we assessed whether the peptide inhibitor would have a combined effect with a molecule that targets ErbB2, Herceptin. Co-treatment of Herceptin plus 1.0 × 10−5 M G7-18NATE-P peptide in SK-BR-3 cells resulted in a 46% decrease in the Herceptin EC50 value and no decrease following the co-treatment with Herceptin and penetratin alone. This Grb7 peptide has potential to be developed as a therapeutic agent alone, in combination with traditional chemotherapy, or in combination with other targeting molecules
    • …
    corecore